object DFMetricProcessor extends BasicMetricProcessor
Regular DF metrics processor. Works for batch applications only.
- Alphabetic
- By Inheritance
- DFMetricProcessor
- BasicMetricProcessor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getColumnIndexMap(df: DataFrame): Map[String, Int]
Builds map column name -> column index for given dataframe
Builds map column name -> column index for given dataframe
- df
Spark Dataframe
- returns
Map(column name -> column index)
- Attributes
- protected
- Definition Classes
- BasicMetricProcessor
-
def
getColumnNamesMap(df: DataFrame): Map[Int, String]
Builds map column index -> column name for given dataframe
Builds map column index -> column name for given dataframe
- df
Spark Dataframe
- returns
Map(column index -> column name)
- Attributes
- protected
- Definition Classes
- BasicMetricProcessor
-
def
getColumnTypes(df: DataFrame): Map[String, DataType]
Builds map of column name to column data type.
Builds map of column name to column data type.
- df
Spark Dataframe
- returns
Map(column name -> column datatype)
- Attributes
- protected
- Definition Classes
- BasicMetricProcessor
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
processRegularMetrics(source: Source, sourceMetrics: Seq[RegularMetric])(implicit dumpSize: Int, caseSensitive: Boolean): Result[MetricResults]
Process all metrics for a given source using DataFrame metric calculators.
Process all metrics for a given source using DataFrame metric calculators.
- Single-pass and grouping metric calculators are processed separately.
- Grouping calculators are combined per their list of columns.
- After all calculators have finished their computation, metric results are build.
- source
Source to process metrics for
- sourceMetrics
Sequence of metrics defined for the given source
- dumpSize
Implicit value of maximum number of metric failure (or errors) to be collected (per metric and per partition). Used to prevent OOM errors.
- caseSensitive
Implicit flag defining whether column names are case sensitive or not.
- returns
Map of metricId to a sequence of metric results for this metricId (some metrics yield multiple results).
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()