c

org.checkita.dqf.core.metrics.df.regular.BasicNumericDFMetrics

NumberLessThanDFMetricCalculator

case class NumberLessThanDFMetricCalculator(metricId: String, columns: Seq[String], compareValue: Double, includeBound: Boolean, reversed: Boolean) extends ConditionalDFCalculator with NumberCriteriaRepr with Product with Serializable

Calculates count of rows for which column value is less than compareValue

metricId

Id of the metric.

columns

Sequence of columns which are used for metric calculation

compareValue

Target value to compare with

includeBound

Flag which sets whether compareValue is included or excluded from the interval

reversed

Boolean flag indicating whether error collection logic should be reversed for this metric

Linear Supertypes
Serializable, Serializable, Product, Equals, NumberCriteriaRepr, ConditionalDFCalculator, ReversibleDFCalculator, DFMetricCalculator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NumberLessThanDFMetricCalculator
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. NumberCriteriaRepr
  7. ConditionalDFCalculator
  8. ReversibleDFCalculator
  9. DFMetricCalculator
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NumberLessThanDFMetricCalculator(metricId: String, columns: Seq[String], compareValue: Double, includeBound: Boolean, reversed: Boolean)

    metricId

    Id of the metric.

    columns

    Sequence of columns which are used for metric calculation

    compareValue

    Target value to compare with

    includeBound

    Flag which sets whether compareValue is included or excluded from the interval

    reversed

    Boolean flag indicating whether error collection logic should be reversed for this metric

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. val columns: Seq[String]
  7. val compareValue: Double
  8. val criteriaRepr: String
  9. val emptyValue: Column

    All conditional metrics should return zero when DF is empty.

    All conditional metrics should return zero when DF is empty.

    Attributes
    protected
    Definition Classes
    ConditionalDFCalculatorDFMetricCalculator
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def errorConditionExpr(implicit colTypes: Map[String, DataType]): Column

    For direct error collection logic metric increment is considered failed when for one or more of metric columns the condition is not met.

    For direct error collection logic metric increment is considered failed when for one or more of metric columns the condition is not met. For reversed error collection logic metric increment is considered failed when for one or more of metric columns the condition IS met.

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding boolean result.

    Attributes
    protected
    Definition Classes
    ConditionalDFCalculatorDFMetricCalculator
  12. def errorExpr(rowData: Column)(implicit colTypes: Map[String, DataType]): Column

    Error collection expression: collects row data in case of metric error.

    Error collection expression: collects row data in case of metric error.

    rowData

    Array of row data from columns related to this metric calculator (source keyFields + metric columns + window start time column for streaming applications)

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield row data in case of metric error.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  13. def errorMessage: String

    For direct error collection logic values which do not meet provided numeric criteria are considered as metric failure.

    For direct error collection logic values which do not meet provided numeric criteria are considered as metric failure.

    For reversed error collection logic values which DO meet provided numeric criteria are considered as metric failure.

    returns

    Metric increment failure message.

    Definition Classes
    NumberCriteriaRepr
  14. def errors(implicit errorDumpSize: Int, keyFields: Seq[String], colTypes: Map[String, DataType]): Column

    Final metric errors aggregation expression.

    Final metric errors aggregation expression. Collects all metric errors into an array column. The size of array is limited by maximum allowed error dump size parameter.

    errorDumpSize

    Maximum allowed number of errors to be collected per single metric.

    keyFields

    Sequence of source/stream key fields.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield array of metric errors.

    Definition Classes
    DFMetricCalculator
  15. val errorsCol: String

    Name of the column that will store metric errors

    Name of the column that will store metric errors

    Definition Classes
    DFMetricCalculator
  16. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  18. val includeBound: Boolean
  19. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  20. def metricCondExpr(colName: String)(implicit colTypes: Map[String, DataType]): Column

    Create spark expression which checks if column value meets numeric criteria

    Create spark expression which checks if column value meets numeric criteria

    colName

    Column to which the metric condition is applied

    colTypes

    Map of column names to their datatype.

    Attributes
    protected
    Definition Classes
    NumberLessThanDFMetricCalculatorConditionalDFCalculator
  21. val metricId: String

    Unlike RDD calculators, DF calculators are not groped by its type.

    Unlike RDD calculators, DF calculators are not groped by its type. For each metric defined in DQ job, there will be created its own instance of DF calculator. Thus, DF metric calculators can be linked to metric definitions by metricId.

    Definition Classes
    NumberLessThanDFMetricCalculatorDFMetricCalculator
  22. val metricName: MetricName
  23. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  25. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  26. def result(implicit colTypes: Map[String, DataType]): Column

    Final metric aggregation expression that MUST yield double value.

    Final metric aggregation expression that MUST yield double value.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield double metric calculator result

    Definition Classes
    DFMetricCalculator
  27. val resultAggregateFunction: (Column) ⇒ Column

    Aggregation function for all conditional metrics is just a summation.

    Aggregation function for all conditional metrics is just a summation.

    Attributes
    protected
    Definition Classes
    ConditionalDFCalculatorDFMetricCalculator
  28. val resultCol: String

    Name of the column that will store metric result

    Name of the column that will store metric result

    Definition Classes
    DFMetricCalculator
  29. def resultExpr(implicit colTypes: Map[String, DataType]): Column

    Spark expression yielding numeric result for processed row.

    Spark expression yielding numeric result for processed row. For conditional metrics, the increment is 1 when condition is met, otherwise increment is 0 (metric is not incremented).

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding numeric result.

    Attributes
    protected
    Definition Classes
    ConditionalDFCalculatorDFMetricCalculator
  30. val reversed: Boolean
    Attributes
    protected
    Definition Classes
    NumberLessThanDFMetricCalculatorReversibleDFCalculator
  31. def rowDataExpr(keyFields: Seq[String]): Column

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    keyFields

    Sequence of source/stream key fields.

    returns

    Spark expression that will yield array of row data for column related to this metric calculator.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  32. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  33. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from NumberCriteriaRepr

Inherited from ConditionalDFCalculator

Inherited from ReversibleDFCalculator

Inherited from DFMetricCalculator

Inherited from AnyRef

Inherited from Any

Ungrouped