Packages

c

org.checkita.dqf.core.metrics.df.regular.ApproxCardinalityDFMetrics

ApproximateSequenceCompletenessDFMetricCalculator

case class ApproximateSequenceCompletenessDFMetricCalculator(metricId: String, columns: Seq[String], accuracyError: Double, increment: Long) extends DFMetricCalculator with Product with Serializable

Calculates approximate completeness of incremental integer (long) sequence, i.e. checks if sequence does not have missing elements.

Works for single column only!

metricId

Id of the metric.

columns

Sequence of columns which are used for metric calculation

accuracyError

Error of calculation

increment

Sequence increment

Linear Supertypes
Serializable, Serializable, Product, Equals, DFMetricCalculator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ApproximateSequenceCompletenessDFMetricCalculator
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. DFMetricCalculator
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ApproximateSequenceCompletenessDFMetricCalculator(metricId: String, columns: Seq[String], accuracyError: Double, increment: Long)

    metricId

    Id of the metric.

    columns

    Sequence of columns which are used for metric calculation

    accuracyError

    Error of calculation

    increment

    Sequence increment

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val accuracyError: Double
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. val columns: Seq[String]
  8. val emptyValue: Column

    Value which is returned when metric result is null.

    Value which is returned when metric result is null.

    Attributes
    protected
    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def errorConditionExpr(implicit colTypes: Map[String, DataType]): Column

    If casting value to LongType yields null, then it is a signal that value is not a natural number.

    If casting value to LongType yields null, then it is a signal that value is not a natural number. Thus, HyperLogLog computation can't be incremented for this row. This is a metric increment failure.

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding boolean result.

    Attributes
    protected
    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
  11. def errorExpr(rowData: Column)(implicit colTypes: Map[String, DataType]): Column

    Error collection expression: collects row data in case of metric error.

    Error collection expression: collects row data in case of metric error.

    rowData

    Array of row data from columns related to this metric calculator (source keyFields + metric columns + window start time column for streaming applications)

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield row data in case of metric error.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  12. def errorMessage: String

    Error message that will be returned when column value cannot be cast to Long type.

    Error message that will be returned when column value cannot be cast to Long type.

    returns

    Metric increment failure message.

    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
  13. def errors(implicit errorDumpSize: Int, keyFields: Seq[String], colTypes: Map[String, DataType]): Column

    Final metric errors aggregation expression.

    Final metric errors aggregation expression. Collects all metric errors into an array column. The size of array is limited by maximum allowed error dump size parameter.

    errorDumpSize

    Maximum allowed number of errors to be collected per single metric.

    keyFields

    Sequence of source/stream key fields.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield array of metric errors.

    Definition Classes
    DFMetricCalculator
  14. val errorsCol: String

    Name of the column that will store metric errors

    Name of the column that will store metric errors

    Definition Classes
    DFMetricCalculator
  15. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  17. val increment: Long
  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. val metricId: String

    Unlike RDD calculators, DF calculators are not groped by its type.

    Unlike RDD calculators, DF calculators are not groped by its type. For each metric defined in DQ job, there will be created its own instance of DF calculator. Thus, DF metric calculators can be linked to metric definitions by metricId.

    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
  20. val metricName: MetricName
  21. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  22. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  23. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  24. def result(implicit colTypes: Map[String, DataType]): Column

    Final metric aggregation expression that MUST yield double value.

    Final metric aggregation expression that MUST yield double value.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield double metric calculator result

    Definition Classes
    DFMetricCalculator
  25. val resultAggregateFunction: (Column) ⇒ Column

    Use approx_count_distinct function which calculates data cardinality using HyperLogLog++ algorithm.

    Use approx_count_distinct function which calculates data cardinality using HyperLogLog++ algorithm.

    Attributes
    protected
    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
  26. val resultCol: String

    Name of the column that will store metric result

    Name of the column that will store metric result

    Definition Classes
    DFMetricCalculator
  27. def resultExpr(implicit colTypes: Map[String, DataType]): Column

    Retrieves long value from requested column of row.

    Retrieves long value from requested column of row.

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding numeric result.

    Attributes
    protected
    Definition Classes
    ApproximateSequenceCompletenessDFMetricCalculatorDFMetricCalculator
    Note

    Spark expression MUST process single row but not aggregate multiple rows.

  28. def rowDataExpr(keyFields: Seq[String]): Column

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    keyFields

    Sequence of source/stream key fields.

    returns

    Spark expression that will yield array of row data for column related to this metric calculator.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  29. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  30. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from DFMetricCalculator

Inherited from AnyRef

Inherited from Any

Ungrouped