Packages

case class TopNDFMetricCalculator(metricId: String, columns: Seq[String], maxCapacity: Int, targetNumber: Int) extends DFMetricCalculator with Product with Serializable

Linear Supertypes
Serializable, Serializable, Product, Equals, DFMetricCalculator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TopNDFMetricCalculator
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. DFMetricCalculator
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TopNDFMetricCalculator(metricId: String, columns: Seq[String], maxCapacity: Int, targetNumber: Int)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. val columns: Seq[String]
  7. val emptyValue: Column

    TopN metric return empty string as value and NaN as frequency when applied to empty sequence.

    TopN metric return empty string as value and NaN as frequency when applied to empty sequence.

    Attributes
    protected
    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def errorConditionExpr(implicit colTypes: Map[String, DataType]): Column

    If casting value to StringType yields null, then it is a signal that value is not a string.

    If casting value to StringType yields null, then it is a signal that value is not a string. Thus, TopN computation can't be incremented for this row. This is a metric increment failure.

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding boolean result.

    Attributes
    protected
    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  10. def errorExpr(rowData: Column)(implicit colTypes: Map[String, DataType]): Column

    Error collection expression: collects row data in case of metric error.

    Error collection expression: collects row data in case of metric error.

    rowData

    Array of row data from columns related to this metric calculator (source keyFields + metric columns + window start time column for streaming applications)

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield row data in case of metric error.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  11. def errorMessage: String

    Error message that will be returned when column value cannot be cast to string.

    Error message that will be returned when column value cannot be cast to string.

    returns

    Metric increment failure message.

    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  12. def errors(implicit errorDumpSize: Int, keyFields: Seq[String], colTypes: Map[String, DataType]): Column

    Final metric errors aggregation expression.

    Final metric errors aggregation expression. Collects all metric errors into an array column. The size of array is limited by maximum allowed error dump size parameter.

    errorDumpSize

    Maximum allowed number of errors to be collected per single metric.

    keyFields

    Sequence of source/stream key fields.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield array of metric errors.

    Definition Classes
    DFMetricCalculator
  13. val errorsCol: String

    Name of the column that will store metric errors

    Name of the column that will store metric errors

    Definition Classes
    DFMetricCalculator
  14. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. val maxCapacity: Int
  18. val metricId: String

    Unlike RDD calculators, DF calculators are not groped by its type.

    Unlike RDD calculators, DF calculators are not groped by its type. For each metric defined in DQ job, there will be created its own instance of DF calculator. Thus, DF metric calculators can be linked to metric definitions by metricId.

    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  19. val metricName: MetricName
  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  23. def result(implicit colTypes: Map[String, DataType]): Column

    Overriding result expression since for TopN metric the result is not a double value but an array with top-N values from column along with their occurrence frequencies.

    Overriding result expression since for TopN metric the result is not a double value but an array with top-N values from column along with their occurrence frequencies.

    colTypes

    Map of column names to their datatype.

    returns

    Spark expression that will yield result of following type: array(struct(string, double)).

    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  24. val resultAggregateFunction: (Column) ⇒ Column

    User custom aggregation function to find topN values based on SpaceSaver.

    User custom aggregation function to find topN values based on SpaceSaver.

    Attributes
    protected
    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
  25. val resultCol: String

    Name of the column that will store metric result

    Name of the column that will store metric result

    Definition Classes
    DFMetricCalculator
  26. def resultExpr(implicit colTypes: Map[String, DataType]): Column

    Spark expression yielding numeric result for processed row.

    Spark expression yielding numeric result for processed row. Metric will be incremented with this result using associated aggregation function.

    colTypes

    Map of column names to their datatype.

    returns

    Spark row-level expression yielding numeric result.

    Attributes
    protected
    Definition Classes
    TopNDFMetricCalculatorDFMetricCalculator
    Note

    Spark expression MUST process single row but not aggregate multiple rows.

  27. def rowDataExpr(keyFields: Seq[String]): Column

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    Row data collection expression: collects values of selected columns to array for row where metric error occurred.

    keyFields

    Sequence of source/stream key fields.

    returns

    Spark expression that will yield array of row data for column related to this metric calculator.

    Attributes
    protected
    Definition Classes
    DFMetricCalculator
  28. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  29. val targetNumber: Int
  30. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from DFMetricCalculator

Inherited from AnyRef

Inherited from Any

Ungrouped